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Abstract. The removal of divergences from the formal Hartree approximation of the 
vacuum charge density in quantum electrodynamics is discussed as a generalization 
of a procedure known from perturbative calculations in the Furry picture. A new 
diagrammatical justification of this procedure is given. Numerical tests are reported 
which show that the usual approach in the Furry picture can be modified to meet 
the requirementg of approximations inspired by many-body theory. The calculations 
are based on the sum-over-modes expression of vacuum charge density-not in the 
usual version as spectral asymmetry, but in a formulation which takes into account 
corrections for the influence of the free Dirac sea. Owing to numerical expense, a 
self-consistent computation without further approximations in the sums over modes 
proves to be impracticable. 

1. Introduction 

The computation of the level displacement due to radiative corrections in light 
hydrogen-like atoms is one of the well known standed tests of Feynman-Dyson per- 
turbative QED [l]. But in the case of heavy atoms with large nuclear charge numbers, 
2, one has to  renounce a perturbative treatment of the potential which influences the 
atomic electrons. The usual procedure in this case [2] is defined in the framework 
of Furry-picture QED, which is a hybrid of a non-perturbative theory as far as the 
external potential is concerned, and a perturbation theory for the self-interaction of 
the electron field. 

Hartree-Fock-like procedures were proposed to dispose of even the remaining per- 
turbative feature [3] (see also [4] for a related discussion in the context of nuclear 
matter) and to  make possible the treatment of many-electron atoms [5]. 

A QED approximation scheme only makes sense, if a consistent and practicable 
accompanying renormalization procedure is given. This usually means: 

(i) Some regularization scheme is used to  prevent divergency problems during 

t Present address: Fachbereich Physik, Universitat Essen, D-4300 Essen 1, Federal Republic of 
Germany. 
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the evaluation of the formal approximation. 
(ii) A prescription of modifying the regularized expression is given in such a way 

that the removal of the regularization becomes possible. The modifications must be 
suitable for being absorbed in a change from bare to physical parameters (the actual 
renormalization). Uniqueness is obtained by consideration of physical requirements 
(e.g. symmetries). 

The renormalization procedure in Feynman-Dyson perturbative QED is exemplary. 
On the other hand, it is not quite clear how to deal with the Hartree-Fock-like ap- 
proximations. 

In the present article we propose an extension of a strategy used in the context 
of Furry-picture QED [6,7]. The idea of that strategy is to add an intermediate step 
after the regularization, but before the actual renormalization. In this step attention is 
directed to the dependence of the regularized (but not renormalized) non-perturbative 
approximation on the external potential: 

The first few orders of the formal expansion into powers of the external potential 
contain all the divergences which result from a removal of the cut-off. For each given 
cut-off’, this precarious low-order part can be determined by comparative calculations 
with weak fields. 

After subtraction of that part, the remaining, substantially non-perturbative part 
converges as the cut-off is removed. The subtracted low-order part, however, need 
not be exploited in the framework of the non-perturbative approximation but can be 
replaced by a perturbative calculation of corresponding order. We shall call the strat- 
egy sketched above ‘separation of the low-order dependence’. In practice, ‘low-order’ 
often means ‘first-order’. We shall then speak of ‘separation of the linear dependence’ 
then. 

The method has a technically very important merit: the regularization scheme 
used for separating the low-order dependence need not be the same as the one used 
for the actual renormalization. In particular, the condition of compatibility with the 
gauge invariance is no longer in force. Thus, one can work with a simple cut-off 
regularization. 

In the following section a consistent definition of a Hartree approximation to the 
QED vacuum charge density is formulated including renormalization along the lines of 
separation of the linear dependence. 

Section 3 contains a new graphical justification of the separation strategy. It 
may also be useful for an analysis of applicability of the strategy to more advanced 
approximation schemes. 

In section 4 numerical evidence is given that separation of the linear dependence in 
principle works, not only in the procedures of [6,7], but also in calculations with sums 
over discrete modes. The interest in this result originates in the fact, that defining 
non-perturbative approximation schemes in terms of sums over discrete modes is ad- 
vantageous from a heuristical point of view: procedures inspired by non-perturbative 
methods in a non-relativistic many-body theory naturally arise in this form. 

An evaluation of the Hartree approximation might shed light upon the controver- 
sially discussed question about what happens in very strong (‘critical’) external fields, 
where the bound states descend to the Dirac sea (see [2] and references therein for the 
most prominent answer to that question). However, in the arguments of the following 
sections we assume external potentials of moderate strength to avoid those critical sit- 
uations as well as the problem of non-self-adjointness, which appears in (non-realistic) 
Coulomb potentials with nuclear charge numbers 2 > 118. 
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2. 
density 

Definition of the QED-Hartree approximation of the vacuum charge 

It  is well known that in non-relativistic many-body theory t Le Hartree approxima- 
tion can be obtained from the Dyson equation for the exact electron Green function 
by taking into account, instead of all proper self-energy insertions, only an exact 
electron-propagator tadpole [8]. This procedure can be transferred (almost) literally 
to formal QED in the external potential Vz of an atomic nucleus with charge number 
2. The resulting Hartree equation for the electron propagator is shown graphically in 
figure l(a). 

Hartree e 
Hartree + - - +  - 

n n . - a 
U * - - + *  U 

Figure 1. Graphical representation of (U) the (unrenormalized) Hartree equation 
and ( b )  its formal iterative solution. 

We recall the definitions of the propagators entering such graphs, in which the usual 
Feynman rules apply. We use Feynman gauge fixing, Gaussian units, and standard 
notations [l, 21. 

Wavy lines represent the free photon propagators Do, the solution with Feynman 
boundary conditions of 

axaXD:”(t, y) = 4 d ( c  - y)gP”. 

Double lines stand for electron propagators, Sz, in an external potential, V z ,  which 
are the solutions with Feynman boundary conditions of 

( i r~a , ,  - eyoVz - m ) ~ ~ ( . t , y )  = S(Z - y). 

The free electron propagator is the special case So with Vo E 0 and is represented 
by a single line. If 2 # 0 we refer to S, as Furry electron propagators. Further 
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approximations to the exact electron propagator are depicted by double lines with 
labelled boxes. 

The Hartree equation has to be solved iteratively (figure l (b) ) .  
To be more tangible, we now turn to the eigenvalue problem which results from a 

mean-field ansatt for the electron propagator in a discretized spectral representation 
(which requires suitable boundary conditions, see section 4). This ansait, inserted 
into the iteration prescription of figure l ( b ) ,  yields (for details see [5,9]): 

(-a i a  + p + ~ $ ' ( z ) )  v(,lj(z) = c(Z:! &j(z) 

~$')(z) = e v z ( l z l >  (2) 

(1) 
where 

and 

with 

1 

In the last equation, [E](. . .) is an abbreviation of f(E,,(. . .) - ~ , n o c c ( .  . .)), 
where the two sums extend over the occupied and unoccupied one-particle states of 
the configuration considered. For instance, for an N-electron atom in its ground state, 
the occupied states are the Dirac sea (DS) states ( E ( Z : ~  < -m) and the N lowest bound 
states ( I E $ ] I  < m). Especially for N = 0, equation (4) (which then measures the 
spectral asymmetry) gives a formal expression of the approximate vacuum electron 
density in the presence of an external field, when taking into account the electron 
self-interaction by a Hartree iteration. 

All these formal results have been known for a long time. A very ample treatment, 
moreover allowing for Fock's exchange term, can be found in [5]. 

Instead of (4) we are going to use a slightly different formal expression of the 
charge density [9]: 

Formally, one has the symmetry of the free Dirac spectrum: 

and the base independence of traces: 

all 

Thus we obtain 
all 
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We arrive a t  the following expression: 

This form explicitly shows a correction term due to the influence of the free Dirac sea 
in addition to the naive adoption of the expression from non-relativistic many-body 
theory. (Note, that the same correction term can also be obtained following somewhat 
different arguments from [4].) Besides, it is advantageous for computational use, since 
only the occupied bound states are involved. 

However, the problem with formal expressions like (4) or ( 5 )  is, that they in- 
volve infinite sums. Thus, we are forced to start up the machinery of renormalization 
outlined in the introduction. 

We regularize the sums over modes in equation ( 5 )  by the introduction of a lower 
energy cut-off -Ac. Removing the cut-off amounts to the limit Ac --* W. 

Since the formal procedure (1)-(4) or ( 5 )  is iterative, one has two choices concern- 
ing the succession of iteration and removal of divergences: One could either repeat the 
iteration till self-consistency for each given cut-off and study the cut-off dependence of 
these self-consistent results, or one could alternatively remove the divergences already 
in each iteration step, hoping for convergence of this modified iteration. Yet, even if 
both these alternatives work, it is not obvious at all, whether they lead to identical 
results. 

It should be clear, however, that only the second choice will offer a practicable 
way of removing the divergences; otherwise one would have to run through many self- 
consistency procedures (parametrically varying the cut-off) instead of one, certainly 
exceeding the feasibility of numerical treatment. 

.=e- = - +  ren 

Figure 2. Graphical representation of the renormalized Hartree iteration procedure. 

Thus we now concentrate on the removal of divergences in each step of the iteration. 
We are going to replace the iteration prescription of figure l (6)  by that of figure 2. 
This means that instead of the ill-defined density p(Zn'(y) from equation ( 5 )  we have 
to look for a renormalized nth-step vacuum charge density pp'" ""(y) which makes 
sense when inserted in equation (3). 

Here we shall take advantage of a fact which was first used by Rinker and Wilets [6] 
and Gyulassy [7] in the context of an evaluation of the vacuum charge density in the 
first order Furry approximation, and which we shall corroborate in the next section. 

For the moment we are content with stating the following fact. 
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After regularization with a sufficiently large cut-off A,, the charge density ( 5 )  
shows a linear dependence on the effective potential Vg)(y) as long as Z is very 
small: 

p$'(y; A,) = ~ ( y )  ~ g ' ( y )  for z near I 

where, for each fixed y, C(y) is a constant independent of Z .  
We extrapolate to  larger values of Z and define 

We can hereby split up the regularized charge density into a linear part, and a part 
of higher order in the effective potential: 

p t ' ( y ;  A,) = p ( z " ) ' ( ~ ;  A,) + p(Zn)>(v; A,). (7) 

The interest in this split-up stems from the fact that the limit 

exists under the condition that Vp)(y) is non-singular at  y = 0 (which precludes an 
ideal Coulomb potential). This is the key fact of the strategy of separation of the 
linear dependence. 

On the other hand, p(Zn)'(y;A,) diverges as A, -+ 00. But the renormalized 
contribution of first order in an external potential (Vg)(y) in our case) to  the vacuum 
charge density is well known from one-loop perturbative QED [l]; we denote this 
Uehling contribution by pz (y). 

Thus, the required renormalized nth-step vacuum charge density is obtained as 

(n) Ueh 

(9) (n) Ueh 4n)> P ( z n ) Y f )  = Pz (U) + Pz W. 
The part pz -tnb (y) may differ from &;'>(y) from equation (8) by an unphysical but 

finite contribution proportional to (V!$))3! which may be generated depending on the 
details of regularization. If it is present, it will show up in a discrepancy for small 
Z of (9) with the results of third-order perturbation theory. In this case the linear 
extrapolation (6) has to be replaced by a cubic one. Then, only the part of higher- 
than-third order has to be determined non-perturbatively and added to the results of 
third-order perturbative calculations. 

Equation (9) completes the definition of a divergence-free Hartree iteration proce- 
dure for the QED vacuum in the presence of a non-singular external potential. 

3. Diagrammatic analysis of the divergences in an unrenormalized step of 
the Hartree iteration 

In this section we give a diagrammatic power-counting justification of the facts stated 
in the last part of the previous section, especially the existence of the limit. (8). 
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The idea is to  study the dependence of divergences on the effective potential 3y 
correlating the divergences with divergent graphs with known dependence on the PO- 
tential. Although this justification is not a strict mathematical proof, it is more 
systematic than the arguments usually found in this context; this gives rise to the 
hope that it might help to transcribe the strategy for other approximation schemes. 

We particularly stress that the arguments-even though diagrammatical-are not 
perturbative. 

We now investigate which ultraviolet divergences may occur in the diagram within 
brackets in figure 2, containing an insertion of a renormalized propagator loop (from 
the previous step) via a photon line. 

The method of this investigation is to study those diagrams which result from the 
replacement of the ( n  - 1)th-step propagator by one of the diagrams of the lower row 
of figure 3, introducing dotted lines for the renormalized effective potential VP- ' ) .  

I M times 

X x x  x X " . X  
n - 1  I n - l l  n - l l  n-11 1 n - l l  

I I I I I I 
/ e . . /  - -/-/A 

Figure 3. Analytical substitution of the (n - 1)thstep propagator. 

This most definitely does not mean that we are going to expand this propagator 
into powers of the effective potential (which would be a perturbative argument); we 
do not aim a t  an evaluation of the diagrams. Rather, in the substantiation of our 
strategy, we follow the arguments from chapter 11 of [lo]: 

In coordinate representation the ultraviolet divergences of the propagator loop 
originate in the short-distance singularities of the ( n  - 1)th-step electron propagator 
S$-l)(z, y). We concentrate on the singular part, S,,,, of this propagator. Depending 
on the diagram (i.e., the corresponding integral) which is analysed, the singular part 
can be decomposed as 

Here, S,,,,, the serious contribution to the singular part, is a sum of M terms of 
decreasing gravity of singularity: 

i= l  

and SZ,,,,, the harmless contribution to the singular part, is an even less singular 
expression. The last part is called harmless because its singularity is so weak that 



3976 A Hamm and D Schu"t2e 

the integral being under examination would exist, if Sz,8 were replaced by Sz,$,. 
An actual realization of the decomposition (10) and (1 1) requires the choice of some 
regularization scheme by which the sum (11) can be obtained from a 'perturbative' 
extraction of M singular terms. The fact that M is finite is essential, because we must 
not use an infinite perturbative expansion. (For an illustrative example of a similar 
decomposition of the free scalar propagator S ~ a l ( z )  we refer to [lo], where dimensional 
regularization is used. The z = 0 singularity of this propagator can be interpreted 
as the combined effect of a z = 0 pole in non-integer dimensions and a singular 
behaviour in the transition to the physical dimension. In non-integer dimensions the 
decomposition (11) is equivalent to a sum over decreasing powers of l /z.)  

All we need to  know about Sz,si is that its short-distance behaviour tallies with 
that of the ith term of the lower row of figure 3. Now, the structure of possible 
ultraviolet divergences can be discussed by confining our attention to  the part Sz,ss, 
or more precisely, by studying the effect of its short-distance behaviour on the integral. 
This is exactly what is done by the replacement indicated in figure 3. 

After this replacement, we interpret the diagrams in momentum space, and connect 
the free ends of the potential lines and of the photon line of the insertion to one 
auxiliary vertex. We so maintain the applicability of the usual graph-theoretical [ll] 
identification of the first Betti number of the graph with the number of independent 
integrations in view of momentum conservation at  each vertex. 

Taking into account Furry's theorem (cf [l]) we conclude that the only diagrams, 
T i  (i = 1,3 ,5 , .  . .), which could contribute to the divergence of the RHS of figure 2 
show the structure depicted in the first row of figure 4. 

Figure 4. Graphs relevant to the detection of divergences. 

Here, power-counting methods can be used to reveal possible divergences: Only 
those diagrams r i  can cause divergences, which have subdiagrams, rij C ri, with 
non-negative superficial degree of divergence, w ( y i j )  2 0. 

The superficial degree of divergence, w ( y ) ,  describes the behaviour of the inte- 
grands corresponding to the diagram y,  when all the momenta of integration grow 
large simultaneously: 

w ( Y )  = 4p(Y) -k N e ( Y )  deg(SO) + Nph(Y) deg(DO) -k N A ( r )  deg(A(Z")). (12) 

In this equation p(7) ,  Ne(y), Nph(7)3 and N A ( y )  are the first Betti number, the 
number of electron lines, of photon lines, and of potential lines, respectively. 
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The ultraviolet degree of a function f : Rm -+ R’ is defined as 

X-’f(Xp) - # 0, - p E IWm - {@I} (13) 

and therefore 
deg(So) = -1 

deg(l3,) = -2. 
and 

On the other hand, for a distribution of the form g(p)  = G(p,)f(p), where 

we define 

This definition takes into account that the Dirac function effectively reduces the di- 
mension of the integral by one. 

Since we are dealing with static potentials, the four-dimensional Fourier transform 
A$)  of V g )  has the form of g in equation (16), with f being the three-dimensional 
Fourier transform of V g ’ .  From (13) and (16) we thus obtain 

deg(A(Z“)) = max p‘ V $ ) ( p s )  # 0, z E R3 - { O } }  - 3 - 1 .  (17) 

If the potential shows a Coulomb 1/r singularity at  the origin, this degree is 

But with a more realistic model of the charge distribution of the atomic nucleus (cf [2]) 
which generates the potential, the potential will be finite at the origin: 

In this case, inserting (14), (15), and (19) into equation (12) and making use of the 
Euler-Poincark formula 

From this equation we see, that for the diagrams r j  from figure 4 

(22) = 1 - j. 
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Therefore only the diagram rl is superficially overall-divergent. (Note that using (18) 
instead of (19) would result in w ( r j )  = 1 for each j .  Thus, all the r j  would be super- 
ficially overall-divergent. This shows that for a singular potential there are ultraviolet 
divergences in all orders of a formal expansion in powers of the potentiai.) 

Among all the subgraphs of the diagrams r l ,  r3,, . . there are only two with non- 
negative superficial degree of divergence: yI1 with w ( r l l )  = ‘2 and 731 with ~(731) = 0 
(see figure 4, second row). They are both well known in the context of perturbative 
calculations [l]: yll from the Uehling term of vacuum polarization and 731 from the 
Karplus-Klein term of photon-photon scattering. 

If we follow the procedure of equations (6), (7) (separation of the linear depen- 
dence), we get rid of the divergences connected with the graphs rl and yI1. If required 
we can, as mentioned above, extend the procedure to a separation of the third-order 
dependence to  avoid the possible problems of 731. 

However, this need not be necessary in view of a property of the Karplus-Klein 
term, which we recall now. The diagram y31 represents, after assigning momenta and 
orientations to the electron lines in all possible ways, six different graphs. It is well 
known (see [1‘2]) that the divergent contributions from these graphs cancel mutually, 
independent of the regularization scheme. But the finite part which remains depends 
noticeably on the method of regularization. 

A sufficient condition for the correctness of the finite result is to  respect the gauge 
invariance in all steps of the regularized calculation (e.g. Pauli-Villars regularization 
or dimensional regularization). 

A simple necessary a priori  criterion for a regularization which leads to  the correct 
finite part of 731 is not known. So, since we do not want to give up the convenience of 
free choice for an easy-to-use regularization, we have to  check our results a posteriori .  
If there are difficulties with yS1, they show up as inconsistencies with third-order 
perturbative calculations, as mentioned in the end of the previous section. 

4. 
summat ion 

Numerical test of the first-order subtraction in the context of mode 

The realization of the approximation scheme outlined in section 2 is an extensive 
computational task. Before tackling this problern, one should try to get a numerical 
confirmation that first-order subtraction really removes divergences from the sums 
over modes; the arguments from the preceding section are encouraging but of course 
not strictly conclusive, and the fact that the method works in the examples of [6,7] 
says little about its applicability to the case of discrete mode summation according to 
equation ( 5 ) .  

The computation of pg’>(z) from equations (8)) (7),  and (5) for r := 1zI not too 
small (compared with the scale given by the imposed boundary conditions) presents 
itself as a test of convergence. The restriction concerning r serves the purpose of a 
comparatively rapid convergence of the sums. Such a test was  performed in [9]. We 
briefly sketch the procedure and the results. 

For a central potential V g ) ( z )  = V g ) ( r )  it is standard [a] to  replace equation (1) 
by the radial Dirac equation, which follows from a separation ansatr 



Divergences in the QED-Bartree  Approximation 3979 

for the solutions of (1) with relativistic angular momentum quantum number h: and 
magnetic quantum number p ( j  = I K I  - 3, I, = j f sgn (h:)/2, Q?,: spherical spinor). 

We obtain a countable set of square integrable solutions to the radial Dirac equa- 
tion by imposing the boundary condition 

Gj(R) + Fi(R)  = 0 

for a suitably large 'bag radius' R. (This condition is adopted from the MIT-bag quark 
model. We also investigated the condition Fi(R) = 0 with no noteworthy change in 
the results.) The radius R has to be larger than the extension of the atomic shell, say 
R >_ 10 A. 

Equation (5) becomes 

k=l 

Even though the RHS expression of equation (25) may exist for all k without 
renormalization, the sum over R in (24) certainly diverges. 

(cf [6,7]). Now the sum in (24) does exist. 
But after renormalization of (25) the p z k ( r )  (0) 

As an example of the renormalization of (25) we concentrate on p z l  (0) . 

rapidly decrease with increasing R 

The regularized but unrenormalized density p(ZoI)(r; A,) is calculated from (25) by 
a low-energy cut-off -Ac in the sums. The decomposition (7) is realized numerically 
in a particulary simple way if Vz(r )  is proportional to 2, since ( 6 )  becomes 

p'zD"(ar; A,) = ZPj"'(Yl A c ) .  

Thus, 

The statement to be tested is that this expression converges for A ,  + CO to  the 
Furry-picture correction of the one-loop vacuum polarization. 

The rate of convergence is expected to increase with r/R.  We content ourselves 
with values r / R  > 1/100 to get sufficiently rapid convergence, reasonable for the 
purpose of a test. As a matter of fact, r then has the order of magnitude of lOOA,, 
where the Compton wavelength of the electron 

gives the range of the neighbourhood of the nucleus, where vacuum polarisation be- 
comes significant. Thus, our test consists of showing that the expression (26) with 
r >  R/100 converges to zero. 
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I- 
U ^C 

sz 
n c 

-200 

-300 
(a) Z = 1  : 

0 ODE aom 0.06 

(Ac - m ) / m  

Figure 5. Dependence on the cut-off Ac of the I K I  = 1 parts at a distance r = 
100Ae of ( a )  the unrenormalized vacuum charge density, p $ i ( r ; A c ) ,  with Z = 1, 

( b )  the unrenormalized vacuum charge density, p ( Z 4 ) ( r ; A C ) ,  with 2 = 82, (c) the 
renormalized correction, p$4)'(r; Ac ), to the first-order vacuum charge density with 
Z = 82. The radius of the boundary conditions is R = lOA. 

Since in our calculations r is large not only compared to the size of the nucleus 
but also to Xe,  it is sufficient to use an ideal Coulomb potential 

l/zcoul(r) = -Ze /r .  
Modification of this potential due to the nuclear charge distribution is essential for 
convergence only for much smaller T .  

The Coulomb solutions of the radial Dirac equation can be explicitly written down 
in terms of confluent hypergeometric functions (see [2,9]). This spares us numerical 
integration of this differential equation. For a realistic external potential, or higher 
iterative steps, numerical integration is unavoidable. 

Figure 5 shows the result of a computation following equation (26) for 2 = 82, 
R = 10 A, r = lOOX, (* R/r  FZ 25). Parts (U) and ( b )  depict the cut-off dependences 
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of the two unrenormalized densities in the RHS of equation ( 2 6 ) .  The largest cut-off 
used, Ac m 1.019me,  leads to  a restriction of the sums in ( 2 5 )  to about 300 modes 
each. (To be precise, the curves shown in figure 5 are the smoothed versions of step 
functions with 300 steps each, according to the discrete values of the cut-off where 
new modes enter the calculation.) Both curves converge to finite values. Especially 
for ( b )  we find 

J r  2 p z l ( r ) J  (0) > 1.2 x ~ O - ~ ~ / . X , .  

Figure 5 ( c )  shows the resulting density of higher than first order in the external 
potential: it converges to zero with an accuracy of lom4 e / A , .  

Precision is limited by the oscillatory behaviour of the curves, which is due to  the 
sharp cut-off. The oscillations can be removed and convergence can be accelerated by 
implicitly extrapolating the curves (as discussed in [6] in a slightly different context). 

The accuracy of our calculation suffices to accomplish the object of the test. For 
an actual computation the accuracy should be improved by at  least three orders of 
magnitude. 

Calculations with larger values of R show that this additional expenditure is barely 
profitable; the amplitude of the oscillations is decreased relatively little. 

The minimal number of modes necessary to detemine the limit Ac -i 00 is found 
to  be approximately 10 R / r  in each sum. 

5. Conclusion 

Separation of the linear dependence has in principle qualified for removing divergences 
from sum-over-mode expressions of vacuum charge density. Calculations for distances 
much smaller than the Compton wavelength of the electron need quite an effort; sums 
over several millions of modes are required. Concerning the Hartree procedure this 
means that in each iteration step several millions of solutions to the Dirac equation 
have to be determined numerically. This hurdle of insurmountable computational 
effort should be bypassed by introducing some averaging procedure in the sums over 
modes. In a sense the procedure of [6]  can be reinterpreted in this way. 

It does not seem likely, for critical external fields, that the results of a Hartree 
calculation should reveal a qualitative change compared with those within the Furry 
picture. (Criticism of the widely held ideas of those critical situations could rather be 
founded on a radical doubt about the applicability of the external field approximation 
in this case.) 

Beyond those more practical questions, the aim of this article has been to plead for 
raising the separation of the low-order dependence from a special trick in the Furry- 
picture computation of vacuum polarization to a more general method for renormal- 
izing suitable non-per turbative approximations. 
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